当前位置: 首页 > 师资队伍 > 个人主页
bliu
刘 博
职称: 教授,博导,国家级高层次人才计划入选者
所属部门: 基础数学系
办公室: 闵行数学楼322室
办公电话: 54342646-322
邮箱: bliu@math.ecnu.edu.cn
个人主页: http:/~bliu
学校名录: https://faculty.ecnu.edu.cn/_s42/lb2/main.psp
研究方向或职务
博导,国家级高层次人才计划入选者,流形上的整体分析,Atiyah-Singer 指标理论,微分K理论
个人履历
澳门人威尼斯·(中国)官方网站- welcome欢迎光临

Seminar of differential geometry in ECNU

Research field

Differential Geometry.

Special interests

Global analysis on manifolds, local index theory and differential K-theory.

Main research objects

Analytic and differential-topological properties of Atiyah-Patodi-Singer eta-invariant, Bismut-Cheeger eta form, Ray-Singer analytic torsion, elliptic genera and related objects, especially on relations between eta forms and differential K-theory.

 

Employment history
Postdoc: Universität zu Köln; Humboldt-Universität zu Berlin in Germany.


Visit
2017.1 Institut des Hautes Études Scientifiques (IHES), France;
2017.3 Max Planck Institute for Mathematics (MPIM), Germany;
2017.5 University of California, Santa Barbara, USA
2018.5 Institut de Mathematiques de Jussieu, France.


Education

2013.12 Ph.D., Mathematics, Chern Institute of Mathematics, Nankai University of China. (Advisor: Prof. Weiping Zhang)

Publications
[1] (with Jianqing Yu) On the Anomaly Formula for the Cappell-Miller Holomorphic Torsion. Sci. China Math.. 2010, 53(12): 3225-3241.
[2] (with Jianqing Yu) On the Witten Rigidity Theorem for Stringc Manifolds. Pacific J. Math., 2013, 266(2): 477-508.
[3] (with Jianqing Yu) Rigidity and Vanishing Theorems on Z/k Spinc manifolds. Trans. Amer. Math. Soc. 2015, 367(2), 1381–1420.
[4] Functoriality of Equivariant Eta Forms. Journal of Noncommutative Geometry. 2017, 11(1), 225-307.
[5] Real embedding and Equivariant Eta Forms. Math. Z. 292 (2019), 849-878.
[6] (with Xiaonan Ma) Differential K-theory, eta-invariant, and localization. C. R. Math. Acad. Sci. Paris. 357(10) (2019), 803--813.
[7](with Xiaonan Ma) Differential K-theory and localization formula of eta invariants. Invent. Math. 222(2) (2020), 545-613.
[8] Equivariant eta forms and equivariant differential K-theory. Sci. China Math. 64(10) (2021), 2159-2206.
[9] (with Xiaonan Ma) Comparison of two equivariant eta forms. 61 pages. arXiv:1808.04044. To appear in Advances in Mathematics

Preprints
[10] Bismut-Cheeger eta forms and higher spectral flow. arXiv:2105.01926.

Notes


[1] Complex manifold and Kaehler geometry (2018 spring course)

[2] Global analysis on manifolds (2019 spring course)

 


研究成果

Teaching:

Undergraduates:

Autumn 2019: Mathematical Analysis I

Spring 2020: Mathematical Analysis II

Autumn 2020: Mathematical Analysis III

Spring 2021: Differential Geometry

Spring 2022: Differential Geometry

 

 

Graduates:

Spring 2018: Complex Manifolds and Kaehler Geometry

Spring 2019: Analysis on manifolds

Spring 2020: Riemannian Geometry

Autumn 2020: Introduction to Lie groups