当前位置: 首页 > 师资队伍 > 个人主页
郑海标
职称: 副教授,博导
所属部门: 应用数学系
办公室: 闵行数学楼207室
办公电话: 54342646-207
邮箱: hbzheng@math.ecnu.edu.cn
个人主页: http:/~hbzheng
研究方向或职务
博导,计算数学
个人履历
澳门人威尼斯·(中国)官方网站- welcome欢迎光临

Resume:
2002.9-2006.7 西安交通大学 信息与计算科学专业 学士
2006.9-2011.12 西安交通大学 计算数学 博士(导师 侯延仁教授)
2010.9-2011.8 美国匹兹堡大学 联合培养博士生(导师W.J.Layton教授)。
2011.12-2014.9 西安交通大学数学与统计学院 计算科学系 讲师
2013.12-2014.3 香港理工大学 助理研究员 (访问林延平教授)
2014.7-2014.8 香港城市大学 研究员 (访问孙伟伟教授)
2014.10- 澳门人威尼斯官网数学系,副教授

2013年 陕西省高等学校科学技术奖一等奖(第二完成人)
2014年 陕西省优秀博士学位论文

研究成果

个人主页(Homepage):http://gr.xjtu.edu.cn/web/hbzheng13/home

 

博士学位论文:不可压缩Navier-Stokes方程变分多尺度方法研究

 

1. Jiaping Yu, Haibiao Zheng*, Feng Shi. A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions. International Journal for Numerical Methods in Fluids, 2012, 70: 793-804 (SCI 008PE).

2. Haibiao Zheng*, Yanren Hou, Feng Shi, A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow[J]. SIAM J. Sci. Comput., 2010, 32: 1346-1361 (SCI 608IE).

3. Haibiao Zheng*, Li Shan, Yanren Hou, A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations[J]. Numerical Methods for Partial Differential Equations, 2010, 26: 1180-1190 (SCI 640NH).

4. Haibiao Zheng*, Yanren Hou, Feng Shi, Adaptive Variational multiscale methods for incompressible flow based on two local Gauss integrations[J]. Journal of Computational Physics, 2010, 229: 7030-7041 (SCI 646VG).

5. Haibiao Zheng*, Yanren Hou, Feng Shi, Lina Song, A finite element variational multiscale method for incompressible flows based on two local Gauss integrations[J].Journal of Computational Physics, 2009, 228: 5961-5971 (SCI 474PH).

6. Lina Song, Yanren Hou, Haibiao Zheng, Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations[J], J. Sci. Computing, 55(2013), 255-267.(SCI 131DS)

7. Li Shan, Yanren Hou, Haibiao Zheng*, Variational Multiscale method Based on the Crank-Nicolson Extrapolation scheme for the non-stationary Navier-Stokes equations, International Journal of Computer Mathematics, 2012, 89(16): 2198-2223. (SCI 042PG).

8. Li Shan, Haibiao Zheng, W.J. Layton, A decoupling method with different subdomain time steps for the nonstationary stokes-darcy model [J], Numer.Method for Partial Differential Equations, 2013, 29(2): 549-583.SCI 076XZ

9. Li Shan, W.J.Layton, Haibiao Zheng, Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier-Stokes equations, International Journal of Numerical Analysis and Modelling, 2013, 10(4): 943-971.SCI 217IW

10. Lina Song, Yanren Hou, Haibiao Zheng, Adaptive variational multiscale Method for the Stokes equations[J], International Journal for Numerical Methods in Fluids, 2013, 71: 1369-1381.(SCI 112VT)

11. Haibiao Zheng, Jiaping Yu, Kaitai Li, Feng Shi, A variational multiscale method with bubble stabilization for the Oseen problem based on two local Gauss integrations[J], Applied Mathematics and Computation, 2012, 219(8): 3701-3708.(SCI 041WA).

12. Li Shan, Haibiao Zheng*, Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions[J], SIAM J. Numer. Anal., 2013, 51(2): 813?839.(SCI 136ZZ)

13. Haibiao Zheng, Feng Shi, Yanren Hou,  Jianping Zhao. A new local and parallel finite element algorithm based on the partition of unity [J], submit to

14. Jiaping Yu,  Feng Shi, Haibiao Zheng. Local and parallel finite element method based on the partition of unity for the Stokes problem[J],  SIAM J. Sci. Comput., 2014, 36(5): C547-C567.http://dx.doi.org/10.1137/130925748

15. Haibiao Zheng, Jiaping Yu, Feng Shi. Local and parallel finite element method based on the partition of unity for incompressible flow[J], J. Sci. Comput., DOI: 10.1007/s10915-014-9979-x

16. Haibiao Zheng, Lina Song, Yanren Hou, Yuhong Zhang. The partition of unity  parallel finite element algorithm[J], Adv. Comp. Math., DOI 10.1007/s10444-014-9392-x

17. Feng Shi, Haibiao Zheng, Jiaping Yu, Ying Li, On the convergence of  Variational multiscale methods based on Newton's iteration  for the incompressible flows[J]. Appl. Math. Model., 2014, 38: 5726?5742.

18. Cong Xie, Haibiao Zheng, A parallel variational multiscale method for incompressible fows based on the partition of unity.  Int. J. Numer. Anal. Model., 2014, 11, 854-865.

19. Li Shan, Haibiao Zheng, Jiaping Yu. Second-order partitioned time stepping methods for a parabolic two domain problem[J], Numer. Meth.PDEs,submit to