当前位置: 首页 > 师资队伍 > 个人主页
罗 栗
职称: 教授,博导
所属部门: 基础数学系
办公室: 闵行数学楼225室
办公电话: 54342646-225
邮箱: lluo@math.ecnu.edu.cn
个人主页: http:/~lluo
学校名录: https://faculty.ecnu.edu.cn/_s42/ll2/main.psp
研究方向或职务
博导,李理论、表示论
个人履历
澳门人威尼斯·(中国)官方网站- welcome欢迎光临

教育经历:

2000.09--2004.07 中国科学技术大学 数学系 本科
2004.09--2009.07
中国科学院 数学与系统科学研究院 博士

工作经历:

2009.08--2012.12 澳门人威尼斯官网 数学系 讲师
2013.01--2021.12
澳门人威尼斯官网 数学系 副教授
2022.01
至今 澳门人威尼斯官网 澳门人威尼斯官网 教授

学术访问:

2009.01--2009.07 澳大利亚 悉尼大学 数学与统计学院
2013.09--2014.04
美国 弗吉尼亚大学 数学系
2014.12
台北 中院 数学研究所

 

研究成果

Preprints

[25] Li Luo, Zheming Xu, Invariant theory of i-quantum groups of type AIII, arXiv: 2310.12721. 15 pages.

[24] Weideng Cui, Li Luo, Zheming Xu, Asymptotic Schur algebras and cellularity of q-Schur algebras, arXiv: 2305.14633. 28 pages.

Paper accepted

[23] Weideng Cui, Li Luo, Weiqiang Wang, Cells in affine q-Schur algebras, Israel J. Math., to appear, arXiv: 2004.00193. 31 pages.

Paper Published

[22] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine Hecke algebras and quantum symmetric pairs, Mem. Amer. Math. Soc. 281 (2023), no. 1386, ix+92pp. (Research Monograph)

[21] Jian Chen, Li Luo, Multiplication formulas and isomorphism theorem of iSchur superalgebras, J. Pure Appl. Alg. 227 (2023), 107229, 36pp.

[20] Chih-Whi Chen, Shun-Jen Cheng, Li Luo, Blocks and characters of D(2|1;ζ)-modules of non-integral weights, Transform. Groups 27 (2022), no. 4, 1223--1250.

[19] Li Luo, Zheming Xu, Geometric Howe dualities of finite type, Adv. Math. 410 (2022), 108751, 38pp.

[18] Li Luo, Weiqiang Wang, Lectures on dualities ABC in representation theory, Forty years of Algebraic Groups, Algebraic Geometry, and Representation Theory in China  (In Memory of the Centenary Year of Xihua Cao’s Birth) , World Scientific (Singapore), 2022.  arXiv: 2012.07203. 57 pages. (Lecture Notes)

[17] Li Luo, Weiqiang Wang, The q-Schur algebras and q-Schur dualities of finite type, J. Inst. Math. Jussieu 21 (2022), no. 1, 129--160.

[16] Chih-Whi Chen, Shun-Jen Cheng, Li Luo, Blocks and characters of G(3)-modules of non-integral weights, J. Algebra 588 (2021), 574--616.

[15] Chun-Ju Lai, Li Luo, Schur algebras and quantum symmetric pairs with unequal parameters, Int. Math. Res. Not. 2021 (2021), no. 13, 10207--10259.

[14] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine flag varieties and quantum symmetric pairs, Mem. Amer. Math. Soc. 265 (2020), no. 1285, v+123 pp. (Research Monograph)

[13] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Hideya Watanabe, Quantum Schur duality of affine type C with three parameters, Math. Res. Lett. 27 (2020), no. 1, 79--114.

[12] Jie Liu, Li Luo, Weiqiang Wang,  Odd singular vector formula for general linear superalgebras, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 389--402.

[11] Li Luo, Husileng Xiao, Vust's theorem and higher level Schur-Weyl duality for types B, C and D, J. Pure Appl. Alg. 222 (2018), no. 2, 340--358.

[10] Chun-Ju Lai, Li Luo, An elementary construction of monomial bases of modified quantum affine gl_n, J. London Math. Soc. 96 (2017), no. 1, 15--27.

[9] Bintao Cao, Li Luo, Ke Ou, Extensions of inhomogeneous polynomial representations for sl(m+1|n), J. Math. Phys. 55 (2014), no.8, 081705, 13pp.

[8] Bintao Cao, Li Luo, Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras, J. Lie Theory 23 (2013), no. 4, 1115--1128.

[7] Bintao Cao, Li Luo, Trivial module for ortho-symplectic Lie superalgebras and Littlewood's formula, Sci. China Math. 56 (2013), no. 11, 2251--2260.

[6] Lili Liu, Li Luo, On ad-nilpotent b-ideals for orthogonal Lie algebras, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 241--262.

[5] Li Luo, Abelian ideals with given dimension in Borel subalgebras, Algebra Colloq. 19 (2012), no. 4, 755--770.

[4] Li Luo, Character formulae for ortho-symplectic Lie superalgebras osp(n|2), J. Algebra 353 (2012), 31--61.

[3] Li Luo, Oriented tree diagram Lie algebras and their abelian ideals, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2041--2058.

[2] Li Luo, Cohomology of oriented tree diagram Lie algebras, Comm. Algebra 37 (2009), no. 3, 965--984.

[1] Li Luo, Abelian ideals and cohomology of symplectic type, Proc. Amer. Math. Soc. 137 (2009), no. 2, 479--485.