当前位置: 首页 > 师资队伍 > 个人主页
朱 萌
职称: 教授,博导
所属部门: 基础数学系
办公室: 闵行数学楼327室
办公电话: 54342646-327
邮箱: mzhu@math.ecnu.edu.cn
个人主页: http:/~mzhu
研究方向或职务
博导,微分几何和几何分析
个人履历
澳门人威尼斯·(中国)官方网站- welcome欢迎光临

教育经历 (Education):
2006.8-2012.5 美国里海大学(Lehigh University),博士(Ph.D. in Mathematics)
1999.9-2003.6 浙江大学(Zhejiang University),学士(B.S. in Mathematics)


工作经历(Working Experience):
2014.9至今, 澳门人威尼斯官网(East China Normal University),紫江青年学者(Zijiang Young Research Professor)
2014.10-2017.6, 美国加州大学河滨分校(UC Riverside),访问助理教授(Visiting Assistant Proressor)
2012.9-2014.8, 复旦大学上海数学中心(Shanghai Center for Mathematical Sciences, Fudan University),博士后(Postdoc Fellow)

研究成果

Papers:
(1) Qi S. Zhang and Meng Zhu, Bounds on harmonic radius and limits of manifolds with bounded Bakry-Emery Ricci curvature, to appear in J. Geom. Anal.(2018), https://doi.org/10.1007/s12220-018-0072-9


(2) Qi S. Zhang and Meng Zhu, Li-Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Func. Anal. 275 (2018), 478-515


(3) Huai-Dong Cao and Meng Zhu, Aronson-Benilan estimates for the fast diffusion equation under the Ricci flow, Nonliear Analysis 170 (2018), 258-281.


(4) Meng Zhu, On the relation between Ricci solitons and Ricci-Harmonic solitons, J. Math. Anal. Appl. 447 (2017), Issue 2, 882?889


(5) Qi S. Zhang and Meng Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), 3117-3126


(6) Meng Zhu, Davies type estimate and the heat kernel bound under the Ricci flow, Trans. Amer. Math. Soc. 368 (2016), 1663-1680


(7) Huai-Dong Cao and Meng Zhu, Aronson-Benilan estimates for the porous medium equation under the Ricci flow, J. Math. Pure. Appl. 104 (2015), Issue 4, 729-748


(8) Qiang Chen and Meng Zhu, On rigidity of gradient Kahler-Ricci solitons with harmonic Bochner tensor, Proc. Amer. Math. Soc. 140 (2012), No. 11, 4017-4025.


(9) Huai-Dong Cao and Meng Zhu, On second variation of Perelman's Ricci shrinker entropy, Math. Ann. 353 (2012), No. 3, 747-763.


(10) Meng Zhu, The second variation of the Ricci expander entropy, Pacific J. Math. 251 (2011), No. 2, 499-510.


(11) Huai-Dong Cao and Meng Zhu, A note on compact Kahler-Ricci flow with positive bisectional curvature, Math. Res. Lett. 16 (2009), No. 6, 935-939.


(12) Qi S. Zhang and Meng Zhu, New Volume Comparison results and Applications to degeneration of Riemannian metrics, arXiv:1605.09420, 2016


(13) Chenxu He and Meng Zhu, Ricci solitons on Sasakian manifolds, arXiv:1109.4407, 2011